Enabling Distributed Throughput Maximization in Wireless Mesh Networks via Local Pooling

نویسندگان

  • Andrew Brzezinski
  • Gil Zussman
  • Eytan Modiano
چکیده

This paper considers the interaction between channel assignment and distributed scheduling in multi-channel multiradio Wireless Mesh Networks (WMNs). Recently, a number of distributed scheduling algorithms for wireless networks have emerged. Due to their distributed operation, these algorithms can achieve only a fraction of the maximum possible throughput. As an alternative to increasing the throughput fraction by designing new algorithms, in this paper we present a novel approach that takes advantage of the inherent multi-radio capability of WMNs. We show that this capability can enable partitioning of the network into subnetworks in which simple distributed scheduling algorithms can achieve 100% throughput. The partitioning is based on the recently introduced notion of Local Pooling. Using this notion, we characterize topologies in which 100% throughput can be achieved distributedly. These topologies are used in order to develop a number of channel assignment algorithms that are based on a matroid intersection algorithm. These algorithms partition a network in a manner that not only expands the capacity regions of the subnetworks but also allows distributed algorithms to achieve these capacity regions. Finally, we evaluate the performance of the algorithms via simulation and show that they significantly increase the distributedly achievable capacity region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Throughput Maximization in Wireless Mesh Networks and its Applications

Wireless mesh networks (WMNs) consist of mesh routers and mesh clients, where mesh routers have minimal mobility and form the backbone of WMNs. They provide network access for both mesh and conventional clients. This paper considers the interaction between channel assignment and distributed scheduling in multi-channel, multi radio Wireless Mesh Networks (WMNs). Recently, a number of distributed...

متن کامل

Multcast Algorithms for Mult-Channel Wireless Mesh et'works

Multicast is a key technology that provides efficient data communication among a set of nodes for wireless multi-hop networks. In sensor networks and MANETs, multicast algorithms are designed to be energy efficient and to achieve optimal route discovery among mobile nodes, respectively. However, in wireless mesh networks, which are required to provide high quality service to end users as the "l...

متن کامل

A Novel Multicast Tree Construction Algorithm for Multi-Radio Multi-Channel Wireless Mesh Networks

Many appealing multicast services such as on-demand TV, teleconference, online games and etc. can benefit from high available bandwidth in multi-radio multi-channel wireless mesh networks. When multiple simultaneous transmissions use a similar channel to transmit data packets, network performance degrades to a large extant. Designing a good multicast tree to route data packets could enhance the...

متن کامل

Achieving Throughput Fairness in Wireless Mesh Networks Based on IEEE

We propose a fair bandwidth allocation scheme for multi-radio multi-channel Wireless Mesh Networks (WMNs) using distributed algorithm. Through an extensive simulation, we show that our scheme ensures per node fairness without loss of the total aggregate throughput.

متن کامل

Throughput Maximization for Multi-Slot Data Transmission via Two-Hop DF SWIPT-Based UAV System

In this paper, an unmanned aerial vehicle (UAV) assisted cooperative communication system is studied, wherein a source transmits information to the destination through an energy harvesting decode-and-forward UAV. It is assumed that the UAV can freely move in between the source-destination pair to set up line of sight communications with the both nodes. Since the battery of the UAV may be limite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006